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Philosophy of this Workshop

• Focus on Concepts

• Define Terminology

• Illustrate using Graphics

• Avoid excessively Technical Explanations

• Apply the Concepts to Data

• Focus on ‘What?’ & ‘Why?’ not ‘How?’
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“Statistics, the science of uncertainty,

attempts to model order in disorder.”

Cressie (1991)
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Observed Data ( ‘disorder’ ? )
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Characteristics of Interest ‘Y’
measured at each observed data point

Examples:

Stream Flow

Yield
Muscle Tissue Toughness
CY3, CY5 Image Reflectance

Insect Damage Rating
Bacteria Count

Nitrate Flux
Turbidity
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Primary Goal of Applied Statistics

to obtain accurate predictions ( )

of unobserved Y values
or to understand a process

(i.e., test the effects of a treatment)

Use observed Y values
together with scientific knowledge

by creating a statistical model:

=
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Notes

Fitting a statistical model to data can be viewed as a process of identifying
a sequence of “filters” through which the observed data are “sifted”.
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Initial Attempt to Predict Y

Model the ‘Large-Scale’ Trend

= + *

where

is predicted by fitting a ‘large-scale’ trend to the observed data.

* is data variability remaining after the model is fit.
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Notes

When modeling a characteristic of interest, Y, there are typically well
established large-scale relationships between Y and one or more
fixed-effect “covariates” (i.e., regressors) and/or random “block”
effects.

These large-scale effects are modeled first so that the remaining
(i.e., residual) variability can be examined in detail on a small-scale
to model any spatial dependencies that may be present.
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Refine the Model to Predict Y

Model ‘Small-Scale’ Variability

*

= +  +

nxn
2·Inxn

Correlated Independent

March 15, 2006 An Overview of Spatial Statistics - Vinyard 11

Notes

The initial “filters” capture the large-scale relationships, letting the small-
scale relationships remain in the “residual” data to be modeled by a small-
scale filter.

Accurate modeling of the small-scale variability, composing the residual
data, often requires identification of an appropriate correlation (i.e,
covariance) structure.
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Refine the Model to Predict Y

Model ‘Small-Scale’ Variability

^

= +
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Notes

The presence of small-scale dependencies often means that
there is correlation among data values located within a certain
distance or proximity to one another.

Making use of this “common information” shared by correlated
data values improves a model’s accuracy.

The primary goal of modeling small-scale dependencies is the
identification of an appropriate correlation (i.e., covariance)

structure.
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Decomposing the Data Variability

ANOVA Terminology

Large-Scale

Fixed Effects

Means
• Deterministic Functions

• Regressors(Covariates)

• Treatments

Small-Scale
All ‘residual’ variation

(eg., a raindrop on water surface)

Random Effects*

Variance Component
• Variances

• Covariances/Correlations

*Some models may include large-scale random effects (i.e., blocks)

March 15, 2006 An Overview of Spatial Statistics - Vinyard 15

The General Linear Model (GLM)

Perspectives on Model Components

Y = Large-Scale + Small-Scale

Variation Variation

Y = Fixed Effects + Random Effects*

Y = Mean &/or + Variances &

Covariates Covariances*

Ynx1 = Xnxp· px1 + nx1

Ynx1 = nx1 + nx1

Ynx1 = nx1 + nx1

*Some models include random effects (i.e.,blocks) that are considered “large-scale”.
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Notes

Traditional (General Linear) models typically use only the large-scale effects
to model the process; by either predicting Y at various values of regressors
or for a collection of experimental “treatments” (i.e., fixed-effects).  In
traditional GLMs, the small-scale effects do not contribute to improving
predictability of Y; rather they are used as precision measures (i.e., root
mean-square error) to test hypotheses for the fixed-effects.

Spatial models examine small-scale effects more closely and use the
information shared among correlated data values to improve predictability of
Y.
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The General Linear Model (GLM)

Assumptions – the i.i.d. Mantra

Observed Data - Model Prediction = Model Error
ynx1 - nx1 = nx1

Classical GLM assumptions: i are i.i.d.

i ~ Normal ( 0, 2 )
• independent no correlation among the n residual values.
• identically distributed
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Small-Scale Variation
Variances & Covariances that Describe Model Error

For i i.i.d.

no correlation among

the n data values

nxn is a diagonal matrix…

When the i are correlated,

correlations appear as

non-zero ‘covariances’ in

the off-diagonals of nxn …

nxn

nxnnxn I
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Notes: The Covariance Matrix

To assist in the visualization of how n observed data points are correlated
with one another, statisticians use an n x n “covariance” matrix, denoted as

nxn

The element in row i and column j of nxn is the “covariance” between data
observation i and data observation j. This covariance is typically denoted
as ij

Correlation, , is defined to be a standardized covariance, =

By definition, when ij = 0, observation i and data observation j are
independent (i.e., not correlated, = 0).

By definition, a covariance matrix, nxn, is symmetric about the main
(northwest to southeast) diagonal because ij = ji

Covariances on the main diagonal are more commonly referred to as
variances, ii = i

2 (for data observation i).

ji

ij

⋅
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General Spatial Model

Focus is on modeling Small-Scale Variability

when there is dependence or correlation
among observed residual values.

Correlation

implies

nxn is not diagonal

nxnnnnn

n
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Notes

The key to successfully modeling the small-scale variance for spatially-
correlated data is to accurately identify the relationship between the
proximity or distance among data points and their correlation to one
another.
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General Spatial Model

Terminology

D is the spatial domain or area of interest

si notates the spatial coordinates

Z is a characteristic of interest measured or
observed at the spatial coordinates

D Z(si)
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Notes

We make a shift in notation here from that used by the traditional general linear
model to that used by spatial models.

Characteristic of Interest:

Y for traditional general linear models

Z(s) for spatial models; s denotes the location of the measurement.
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Spatial Auto-Correlation

A Definition

A measure’s correlation with itself relative to proximity/location.

Data values observed at n locations are auto-correlated

when values Z(si) and Z(sj) in close proximity to one another |si-sj| < h

are more alike than values located at a further distance |si-sj| > h.

As the distance, h,

increases between 2 data
observations, si and sj,

the correlation between Z(si)
and Z(sj) decreases.
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Semivariance – A Statistic

for Measuring Autocorrelation

Semivariance Formula:

(si , sj ) = ½ Var[Z(si) – Z(sj )]

= ½ { Var[Z(si)] + Var[Z(sj )]

- 2·Cov[Z(si),Z(sj )] }
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Notes: Semivariance

Semivariance is a statistic and a function that facilitates examining the
relationship between the covariance (i.e., correlation) between the
characteristic of interest, Z, and the locations where it was measured, si

and sj.

The “Auto-Correlation Definition” slide, above, clearly exhibits decreased
covariance (and correlation) with increased distance between si and sj.

We will see in a few subsequent slides (“Required Assumptions for

Modeling Spatial Data”) that under the assumptions of “stationarity”, only
the distance between observed data points is important to allow accurate
estimation of the semivariance (and hence, covariance and correlation).
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Semivariogram – A Tool

for Measuring Autocorrelation
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Notes: Semivariogram

A semivariogram, upon initial consideration, may not be as intuitively
interpretable as the covariance plot on the “Spatial Auto-Correlation” slide
above.

Most readily, a semivariogram provides the Practical Range, h*, which
indicates the distance between any two points in the observed process
beyond which those two points are independent of one another (i.e., not
correlated).

Also, for any distance (h=si-sj ), Cov[Z(si), Z(sj)] = Cov[h] = sill – (h)/2.

The component parts of a semivariogram can be interpreted as:

sill = 2
nugget + partial sill = Var[Z(si)]

where partial sill is the portion of Var[Z(si)] due to variation in Z

2
nugget is the portion of Var[Z(si)] due to measurement error

or small-scale variation in the process



8

March 15, 2006 An Overview of Spatial Statistics - Vinyard 29

Effective Sample Size

in Presence of Autocorrelation

“…positive autocorrelation

results in ‘loss of
information’.

)1(

)1(

+
−⋅

= corr
effective

n
n

neffective = uncorrelated

(independent) samples

ncorr = correlated (dependent)

samples

where is autocorrelation

with 0 1.
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Notes

The more strongly spatial data are correlated, the less “unique” information
is provided by each individual observed data point.

Information shared by data points in closer proximity can improve the ability
to accurately model the characteristic of interest, Z.

Simultaneously, strongly correlated data points can reduce the statistical
power of inferences (i.e., hypothesis tests).

The effective sample size formula (on the previous slide) results from the
assumption (Cressie 1991, p.14-15) that

Cov[Z(si),Z(sj)] = 2· |si-sj|

or equivalently Cov[h] = 2· h where h=|si-sj|
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Notes

The below table illustrates how correlated data contains less unique
information than independent data.  For example, if two data points are
located at a distance from one another that causes them to have a

correlation of =0.2, observing ncorr data points provides information
equivalent to the amount provided by two-thirds fewer independent (i.e.,
uncorrelated data points.

neffective

0 ncorr

0.2 n
corr

0.5 ncorr

0.8 1/9 n
corr

1 0
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Autocorrelation Influences

Statistical Inference

zindep=

n

xx

2

21

⋅

−

Zcorr =

)1(

)1(2

21

−⋅
+⋅⋅

−

n

xx

If positive autocorrelation is present
and ignored, a treatment effect can
be incorrectly declared significant.

Divisor: n for zindep

neffective for Zcorr
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Notes

Example:

On the previous slide, a hypothesis test for the equality of 2 treatment
means has a divisor of n when the data values for the 2 treatments were
independently replicated (i.e., not correlated). In this case, the test statistic
zindep > z =.05 and there is sufficient evidence to reject H0 and declare a
significant difference between the treatment means.

However, if the data values observed for the 2 treatments are correlated
with one another, the divisor for the test statistic, zcorr, is

which is smaller than the divisor in the independent case.

Hence, zcorr < z =.05 so there is an insufficient amount of data (i.e., statistical
power) to reject H0.

)1(

)1(

+
−⋅

= corr

effective

n
n
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Spatial Data

• has no independent replications

• consists of a single n-dimensional observation:

{ Z(s1),…., Z(sn) } at locations s1,…,sn

• estimates dependency, , via semivariance= (si,sj)
using:

1) the observed { Z(s1),…., Z(sn) }

and 2) distances, h, between the s1,…,sn

• predicts Z(s0) at an unobserved location, s0, using the

observed { Z(s1),…., Z(sn) } and the estimated

semivariance= (si,sj)
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Required Assumptions

for Modeling Spatial Data

Stationary Process

Constant Mean: Z(si)= for all si in D

Covariance is function of distance (h=si-sj),

NOT location ( si ):

Cov(si - sj) NOT Cov(si)
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Notes

The validity of all statistical models requires that the data meet some basic
assumptions. Typical spatial models require that the data possess
characteristics of a “Stationary Process”, as defined on the previous slide.
If the data do not represent a stationary process, the fitted spatial model will
produce incorrect predictions and/or inferences.

Spatial models require that the characteristic of interest, Z, have a constant
mean value over the entire domain. This can typically be achieved by
modeling the large-scale effects and use the residual variability as the
spatial data to which a spatial model is fit.
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Required Assumptions for Spatial

Data Modeling

The water level of

a calm pond

during

a light rain shower

is an example

of a stationary

process:

Photo “Raindrops on the Pond”

by Mark Schretlen 11-May-2003
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Notes

The water level on the surface of a pond in a light rain shower is a natural
phenomenon that illustrates a stationary process:

1. The average water level is constant over the entire pond surface

2. The water level within a radius from the point where the rain drop strikes
the surface depends on the water level at all other locations within that
radius. Since the intensity of rain is similar across the entire surface of the
pond, the correlation of water levels within the radius is the same
regardless of where the rain drop hits the surface of the pond and the
strength of correlation within the radius depends only upon the distance
from the raindrops point of impact.
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Definition: Kriging

Predict unobserved z(s0) as a weighted average of the

observed z(s1),…,z(sn) spatially-correlated data

and h (i.e., distance) determine the kriging weights

assigned to each of the observed z(s1),…,z(sn) in the
kriged estimate,  (s0)

The term Kriging was coined by G. Matheron(1963) in
honor of South African mining engineer D.G. Krige,

whose work (1951) laid preliminary groundwork for
the field of “geostatistics”.

ẑ
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Semivariance determines Kriging Weights
Range=20, Sill=10, Nugget=0

Kriged Estimate, (s0 ), at s0 = (x=12,y=30) is 65.7ẑ

ẑ (s0 ) is a weighted average of the observed z(si). The weights sum to 1.

Each point on the graph is sized proportionately to its weight.
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Notes

The previous and next several slides use Isaaks’ and Srivastava’s (1989,
pp. 291, 301-307) small data set of seven observations and one prediction
location to examine the effect of semivariogram parameter on ordinary
kriging predictions. This example was also given as Example 5.5 in
Schabenberger & Gotway (2005).

The only difference between the previous and the next semivariogram is

the range. The larger practical range in the previous slide causes greater
“short-distance” correlations, which results in greater heterogeneity in the
weights used to obtain the kriged estimate.
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Practical Range Changes from 20 to 10

Kriged Estimate, (s0 ), at s0 = (x=12,y=30)
Changes from 65.7 to 68.4

ẑ
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Nugget changes from 0 to 5
Kriged Estimate, (s0 ), at s0 = (x=12,y=30)

Changes from 65.7 to 67.8

ẑ
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Notes

Introduction of a nugget effect yields more homogeneous kriging weights,
similar to the kriging weights resulting from the doubling of the practical
range.
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Sill Doubles from 10 to 20
Kriged Estimate, (s0 ), at s0 = (x=12,y=30)

Remains Unchanged at 65.7

ẑ
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Notes

Compared to the first kriged estimate that used an exponential
semivariogram with Range=20, Sill=10, Nugget=0; the previous slide used
an exponential semivarigram with Sill=20. Doubling of the sill did not

change the kriging weights at all. The larger sill caused only a larger the
kriging variance (i.e., variance of Z(s))
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Direction in Spatial Modeling

Isotrophy – autocorrelation is equivalent in all directions

Anisotrophy – autocorrelation is direction dependent.
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Note

If distance correlations change depending on direction, the appropriate
semivariogram for the spatial model also changes with direction.  In this
case, direction must be considered when fitting the model.
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3 Types of Spatial Models

• Geostatistical / Point-referenced

• Lattice / Areal

• Point-Process / Point-Pattern
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Notes

The majority of the information presented thusfar most readily lends itself to
geostatistical data. However, the general concepts apply (with appropriate
adjustments or modifications) to all 3 types of spatial models.
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Geostatistical / Point-referenced Models

Specific locations s1,…,sn in the
domain D are selected.

The characteristic of interest,
z(s1),…,z(sn), is observed.

Example: Six fields, each planted in a
different soybean cultivar.

• Locations s1,…,sn are n individual
soybean plants.

• z(s1),…,z(sn) are protein
concentration of the plant’s yield.

Crop Science 42:804-815 (2002), A. N. Kravchenko
and D. G. Bullock
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Notes

The figures on the right of the previous slide illustrate how kriging can
produce prediction maps.
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Lattice / Areal Models

Specific locations s1,…,sn

represent ‘contiguous
areas’ in the domain D.

The characteristic of
interest, z(s1),…,z(sn), is
observed for each ‘area’.

Example: # of hazardous
waste sites in each U.S.
state.

SAS/Graph Online Documentation – Proc GMAP
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Notes

Lattice or Areal models have the objective of predicting Z(s) where s is an
“area” rather than a “point”, as in the Geostatistical/point-referenced model
case.
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Two Methods of Modeling Lattice Data

• Simultaneously Autoregessive

• Likelihood methodology

• Conditionally Autoregressive

• Gibbs sampling (Bayesian) methodology

Schabenberger & Gotway (2005) pg.7
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Point-Pattern Models

Objective:

Model the ‘process’ that
generated the spatial data.

Fig a) completely random pattern

Fig b) Poisson cluster process

Fig c) process with sequential
inhibition regularity

Schabenberger & Gotway (2005), p. 82
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Point-Pattern Data

Example 1: A Marked Process

Distribution of hickory( ) and maple trees( ).

Overlaid Separate Plots

Schabenberger & Gotway (2005), p.119,121
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Notes

The “mark” in this marked process is whether the species of tree is hickory or
maple.
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Point-Pattern Data

Example 2: Lightning Strikes

Lightning strikes within 200 miles of the
U.S. east coast April 17-20, 2003.

Schabenberger & Gotway (2005) p.13

Kriged predictions can
also be obtained for
point-pattern data, as
shown by the NASA
map of global
lightning strikes.
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Summary of the 3 Model Types

Analogy: A desktop is the domain D of locations si

Experiment pour sand on the desktop.

Geostatistical & Lattice Data:

• locations si do not change from one pouring
(i.e., experiment) to the next

• z(si)= observed sand depth varies at si

Point-Pattern:

• specify a sand depth of interest

• observe all locations si in D where sand has this depth.

Schabenberger & Gotway (2005)



16

March 15, 2006 An Overview of Spatial Statistics - Vinyard 61

Data Measured at Multiple Scales

“Even when the disorder is discovered to have
a perfectly rational explanation at one scale,
there is very often a smaller scale where the

data do not fit the theory exactly, and the
need arises to investigate the new, residual
uncertainty.”

Cressie (1991)
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Hierarchical Models

• Estimate ‘parameters’ of an experiment using
the observed data z(s1),…,z(sn)

• Assume and impose statistical distributions on 

the parameters to be estimated

• distribution choices rely on theory and/or scientific
knowledge

• modeling of distributions uses Bayesian methods

• GEOBUGS freeware
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